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Abstract The clinical demand for mutation detection within
multiple genes from a single tumour sample requires molecu-
lar diagnostic laboratories to develop rapid, high-throughput,
highly sensitive, accurate and parallel testing within tight bud-
get constraints. To meet this demand, many laboratories em-
ploy next-generation sequencing (NGS) based on small

Electronic supplementary material The online version of this article
(doi:10.1007/s00428-016-2025-7) contains supplementary material,
which is available to authorized users.

P Zandra C Deans
sandi.deans@ed.ac.uk

UK NEQAS for Molecular Genetics, Department of Laboratory
Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK

i3S Instituto de Investigacdo e Inovacdo em Satde/IPATIMUP
Institute of Molecular Pathology and Immunology, University of
Porto, Porto, Portugal

Department of Pathology, University Hospital Coventry and
Warwickshire, Coventry CV2 2DX, UK

Biomedical Quality Assurance Research Unit, Department of Public
Health and Primary Care, KU Leuven-University of Leuven,
Leuven, Belgium

Clinical Pathology, Laboratory Medicine, Medical Services, Region
Skane, Lund, Sweden

Genomics England, Queen Mary University of London, Dawson
Hall, Charterhouse Square, London EC1IM 6BQ, UK

Institute of Pathology, Berlin, Germany and the DGP, German
Society of Pathology, Charite, University Medicine Berlin,
Berlin, Germany

Published online: 27 September 2016

amplicons. Building on existing publications and general
guidance for the clinical use of NGS and learnings from
germline testing, the following guidelines establish consensus
standards for somatic diagnostic testing, specifically for iden-
tifying and reporting mutations in solid tumours. These guide-
lines cover the testing strategy, implementation of testing
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within clinical service, sample requirements, data analysis and
reporting of results. In conjunction with appropriate staff train-
ing and international standards for laboratory testing, these
consensus standards for the use of NGS in molecular pathol-
ogy of solid tumours will assist laboratories in implementing
NGS in clinical services.

Keywords Next-generation sequencing - Best practice -
Molecular pathology - Solid tumours - Quality

Introduction

The clinical demand for mutation detection within multiple
genes from a single tumour sample requires molecular diag-
nostic laboratories to develop rapid, high-throughput, highly
sensitive, accurate and parallel testing within tight budget con-
straints. To meet this demand, many laboratories employ next-
generation sequencing (NGS) based on small amplicons.
Solid tumour sequencing using NGS brings specific chal-
lenges; the samples available are often small, particularly if
coming from diagnostic biopsies, and so the DNA quantity
available for testing may be small. The samples may not have
been optimally treated for NGS, formalin-fixed, paraffin-
embedded (FFPE) samples are particularly challenging and
there can be considerable variation in the processing of mate-
rial throughout the fixation process. The neoplastic cell, stro-
mal and necrotic content can be highly variable within a sam-
ple, and even expert pathologists can judge the purity and
suitability for testing very differently. Tumour heterogeneity
can cause particular challenges as low-level mutations may
not be present in all cells and high-sensitivity techniques are
required to reliable call low-level variants.

The clinical utility of NGS as a tool for use in clinical
practice is now becoming apparent. As NGS opens the possi-
bility for more extensive tumour profiling, this increases the
opportunities for patients to access different drugs. For exam-
ple, a study in colorectal cancer found that use of NGS for
genotyping beyond KRAS enabled selection of the best treat-
ment currently available for more than half of the patients
profiled [1]. NGS has also enabled new clinical trial designs
such as umbrella trials, which require patient stratification
through enabling efficient genomic profiling for patient en-
rollment. Examples of studies include FOCUS4 and
WINTHER, as well as basket trials such as MATCH [2].
The results from the SHIVA study were entirely based on
the use of an NGS panel of actionable genes [3]. Several
panels have been validated for clinical use such as a 22-gene
panel for lung and colorectal [4] and a targeted NGS assay for
detecting somatic variants in non-small cell lung, melanoma
and gastrointestinal malignancies [5]. Experience suggests
that as methods improve, the use of FFPE material will likely
not be a limitation for routine testing [6]. Finally, the cost-
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effectiveness of a targeted NGS approach has been recently
stressed in the fourth-line treatment of metastatic lung carci-
noma and should be extendable to other cancer [7]. All these
results indicate the clinical utility and application of NGS
profiling of tumours in the clinic.

The following guidelines aim to establish consensus
standards for somatic diagnostic testing rather than
germline testing, specifically for identifying and reporting
mutations in solid tumours. Consensus standards will in-
clude the testing strategy, implementation of testing within
clinical service, sample requirements, data analysis and
reporting of results. In addition, laboratories providing
NGS clinical diagnostic testing must adhere to recognised
International Standards [8, 9] and staff must be appropri-
ately qualified, trained and competent.

Testing strategies

Strategies for molecular pathology testing are dictated accord-
ing to the purpose of the test. However, current ESMO and
AMP clinical practice guidelines approve only a limited num-
ber of predictive and prognostic biomarkers for clinical use,
listed in [10, 11]. At the same time, there has been a steady
increase in clinical trials that select patients based on their
molecular tumour profiles suggesting that new therapeutics
will soon require patient selection on this basis. Hence, con-
comitant analysis of multiple genes in different tumour types
is increasingly important for both differential diagnostics and
prediction of response to targeted therapies. This will drive the
development of comprehensive diagnostic panels that detect
multiple gene mutations which may be used for multiple tu-
mour types. Such tests could rely on primer-based amplifica-
tion or probe-based capture methods, followed by NGS and
bioinformatic analyses to define genomic alterations.

The number and scope of genes to be tested depend on the
purpose of the testing. For example, for companion diagnostic
use, the number of genes currently recommended for clinical
testing is very limited [10, 11] and will also depend on the
availability of targeted treatments and reimbursement schemes
and will vary from country to country. However, if there are
clinical trials open in that country for which NGS panel test
results can be used to stratify patients into studies, then a
broader range of genes might be tested.

Currently, the test method of choice is an assay that detects
a panel of clinically actionable genomic alterations at specific
gene-coding regions, so defined by the clinical diagnosis and/
or availability of targeted drug therapies. There is an increas-
ing interest in extending these panels to include genomic al-
terations associated with acquired resistance to target-based
agents, which will become increasingly important as new
drugs become available e.g. acquired mutations of EGFR such
as p.(Thr790Met) and p.(Cys797Ser) [12] and multiple
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mutations of ALK such as p.(Phell174Leu), p.(Leul 152Arg)
and p.(Cys1156Tyr) in lung cancers [13] and acquired resis-
tance EGFR p.(Ser492Arg) in colorectal cancer [14]. Besides
sequencing to stratify patients for targeted therapies, sequence
data can also be used to refine histological diagnosis.
Examples include differentiating between local tumour recur-
rence and secondary tumours in head and neck squamous cell
carcinoma by sequence analysis of early tumour driver genes
such as TP53 [15] or the identification of clinically relevant
groups of gliomas for diagnosis, prognosis and predictive test-
ing by determining the presence or absence of TERT promoter
mutations, /DHI1/IDH2 mutations and 1p/19q co-deletion
[16].

Although employing whole genome sequencing for diag-
nosis may seem the ideal, it requires large resources leading to
extended turnaround times and is not yet optimised for the use
of fragmented and modified DNA and RNA isolated from
FFPE material. The lower read depth also makes it very diffi-
cult to attain the sensitivity needed for routine sequencing of
solid tumours in which genomic alterations might be present
only in a small proportion of cells in the tumour tissue (neo-
plastic cell content) or neoplastic cells (tumour heterogeneity).
Moreover, the genome-wide approach identifies large num-
bers of variants of unclear significance which, for adequate
interpretation, requires concomitant analysis of germline
DNA. This then increases the chance of finding incidental
germline mutations, necessitating pre-test information sharing
and informed consent procedures. More information on man-
aging incidental germline findings can be found in references
[17, 18]. Whole exome sequencing drastically reduces the
sequencing and bioinformatics workload, but shares many of
the drawbacks of whole genome sequencing and is not yet in
routine use for molecular characterisation of solid tumours.

Because of the poor quality (due to fragmentation) and
small amount of DNA extracted from FFPE, amplification-
based enrichment methods using small amplicons are current-
ly more successful than probe-based capture methods in this
context.

The incorporation of a random barcode in PCR prod-
ucts enables the amount of sequenced template molecules
to be determined and, with accompanying bioinformatic
strategies, can reduce the background noise inherent in
each NGS platform, allowing for a higher degree of con-
fidence in individual result calls and for an increase in
overall sensitivity.

The sequencing can be performed on different platforms
which vary in capacity, turnaround time, level of automation
and sequence technology. A summary comparison of methods
can be found in Table 1. Most sequence platforms are based
on sequencing by synthesis i.e. the sequential incorporation of
fluorescent nucleotides of PCR products anchored on a glass
slide (Illumina) or the release of protons after the incorpora-
tion of unlabeled nucleotides (Thermo Fisher). Each has its

A comparison table of NGS platforms and chemistries and discussion of specific applications

Table 1

Comments

FFPE suitability

DNA input

Fusions

Indels

SNV CNV

Custom
panels

Commercial
panels

Hypothesis-free scanning of whole genome.

Good-quality FFPE samples required

lug

Y

Whole genome

Less sensitive for subclonal variation studies

to obtain DNA suitable for WGS
Good-quality FFPE samples required

Small

Exome

to obtain DNA suitable for exome

sequencing
Yes, but requires good-quality

Requires higher quality DNA than other

10 ng +, more

N

Small

Y N

Y

Illumina Truseq

equivalent technologies. Deep sequencing

material

for FFPE

cancer panels

in a cost-effective manner. Identification of

rare mutations andsubclonal variation detection

in heterogenous tumour samples.

20 ng + Yes

Y

Small

Y Y

Illumina

RNASeq
Ampliseq cancer

Larger panels require multiple oligos pool,

Yes

10 ng +, more

N

Small

Y

homopolymer errors

for FFPE

10 ng+

panels—DNA

Ampliseq cancer

Yes

Y

Y

panels—RNA

@ Springer



Virchows Arch

own artefacts. However, as the techniques are optimised over
time, the number of artefacts will be reduced.

Implementation of NGS in a diagnostic laboratory

Test development and test validation, prior to the implemen-
tation and use of any NGS-based diagnostic test, is important.
The implementation phase should develop an end-to-end pro-
cess for testing and documenting the process being validated.
Consideration should be given to the definition of suitable
samples, appropriate extraction methods, quality control of
test samples, fitness of the assay to cover clinically relevant
variants to a sufficient depth for variant calling and the opti-
misation of the bioinformatics pipeline to detect relevant mu-
tations at a suitable sensitivity. If there is insufficient coverage
of a clinically important variant, re-design of a panel or com-
mitment to test by alternative methods may be necessary. For
molecular laboratories without developmental capacities, the
use of commercially available pre-tested gene panels may be
the best option. Nevertheless, testing in the local laboratory
environment prior to the implementation and use of new gene
panels using NGS should be standard for every laboratory.

The implementation phase can utilise samples with a range
of known mutations and commercially available controls, but
should be of the same type as those to be used for diagnostic
testing. A range of mutation types must be tested, such as
single-nucleotide variants, small indels and copy number var-
iants (if tested for) to provide assurance that they will be de-
tected if present. A range of allelic frequencies must be includ-
ed so limits of detection for mutation types are established.
Testing samples from the full range of clinically relevant sam-
ples should establish that the DNA or RNA can be extracted to
suitable concentrations and quality for the required test and
that the samples do not contain substances that may interfere
with the assay.

Validation and verification
Validation

Validation involves defining the performance specifications of
a test that are required to be met and generating evidence
against these that demonstrates that appropriate test perfor-
mance has been met: test accuracy, limitations and uncertainty
ofresults. These criteria will depend on the intended use of the
test as this defines how the test should perform. Therefore, the
user of the test and their needs should be clearly identified.
Validation should test, end to end, all permissible sample
types and should confirm the reliability of the assay to detect
known mutations [19]. The validation procedure must also be
fully documented and reviewed. The test performance
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characteristics selected e.g. analytical sensitivity, specificity,
repeatability, reproducibility and robustness, should be mea-
sured for each sample type and for the range of mutations
covered by the assay e.g. single-nucleotide variants (SNV),
copy number variants (CNV), insertions and deletions. The
number of variants tested should reflect the size of the panel.
The region or genes to be covered by testing should be clearly
indicated.

Validation studies should be performed blind with respect
to the sample variants. Reference materials can be used; these
may comprise commercially available samples that contain a
range of mutations at varying allele frequencies or they may
be samples with pre-defined mutations or mutations that will
be confirmed later, by another method. To test the assay limit
of detection (LOD), it may be necessary to dilute one sample
into another in order to produce a range of mutations with
varying allele frequencies. Validation samples should be rep-
resentative of the material to be tested i.e. tests on FFPE-
derived DNA should use validation samples that are also de-
rived from FFPE tissue and extracted by the same method that
will be used for diagnostic testing.

For somatic sequencing, LOD, expressed as a minimum
variant allele frequency (VAF), should be defined along with
the minimum coverage of sequencing reads to ensure that
genomic alterations are reliably detectable. If several sample
types are to be tested, separate LOD levels should be defined
for each sample type.

In molecular pathology of solid tumours, 300 to 500 se-
quence reads per target are usually sufficient to cover almost
all diagnostic situations if derived from sufficient template
molecules. In a given sample, the exact number of reads re-
quired will depend on the neoplastic cell content of the sample
as well as the VAF. For example, a sample with 40 % neoplas-
tic cells where the test aims to detect mutations down to a VAF
at 10 % will need much higher coverage than a 90 % neoplas-
tic cell sample whose aim is to detect mutations at 30 % VAF,
and the defined thresholds need to take this into account.

Statistical methods can be applied to predict if sufficient
reads are available to call the genetic variants with confidence.
Such statistics are only valid for hybridisation-based methods
or if a molecular barcode is used. They are not applicable for
the commonly used amplicon-based methods. A written vali-
dation protocol and defined acceptance criteria for samples
should be developed for the entire workflow and adhered to
for validation testing. Additionally, validation of any upgrades
to the NGS analysis pipeline should be performed by direct
comparison with the previous version.

The absolute number of samples required to ensure confi-
dence and therefore validation of the test depends on the test
being performed and the intended clinical use of the test re-
sults. This depends on factors such as the variants/panel under
assessment, the region of the gene and how the variants will be
used clinically [20]. It is important that the specific testing
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situation is taken into account. Not all possible allelic variants
are available in the validation process. Therefore, a sufficient
number of well-characterised samples should be used such
that confidence is gained that within a region of interest the
mutation is detected, thus the test should be challenged with at
least one mutation variant with allelic frequency close to the
LOD and with mutations that are notoriously difficult for the
bioinformatic pipelines e.g. indels affecting multiple nucleo-
tides A test is not validated when any control sample of known
characterised mutation is not detected in which case the test
should be modified and the process repeated. Possible sources
of well-characterised samples for use in validation are listed in
Supplementary Table 1 (ST1).

In order to validate a test and to perform ongoing monitor-
ing of quality, performance characteristics of the NGS need to
be measured and evaluated. Table 2 outlines the key test per-
formance characteristics (TPC) for NGS used in molecular
pathology.

Verification

Verification is the process that ensures existing, pre-defined,
performance specifications are met in the local testing envi-
ronment and hence the test performs as expected. This is in
contrast to validation where the test performance specifica-
tions are defined.

NGS machines are available as a technology platform that
can exploit various gene mutations as biomarkers for diagno-
sis, prognosis and selection of treatment and are therefore
somewhat different to closed-system regulatory-approved kits
that are developed for a specific purpose. For the latter, veri-
fication is important as regulatory-approved kits come with
pre-defined performance specifications. In the case of NGS
as an open platform, verification might be slightly different
but may still be applicable in the case of methodology transfer
e.g. adopting a protocol from another laboratory or a publica-
tion or for ensuring that a previously validated test is still
performing as expected. Criteria for the expected performance
of the test and what may lead to result rejection are considered
in the “Quality assessment” section.

Sample handling

The quality and representative nature of the samples analysed
by NGS is a key limiting factor, an important issue addressed
in many publications, and the processes specific to NGS are
discussed below [8—14, 20-26].

Sample transportation, receipt, handling and storing

The correct handling of tissue samples is key to obtaining a
reliable result and is especially important for NGS as the quality

of the DNA/RNA sample is critical (see “Quality assessment”
section). Neutral buffered formalin should yield sufficient qual-
ity nucleic acid. The length of time of tissue fixation should be
calibrated to the size of the specimen. The time between spec-
imen removal and fixation, known as cold ischemia, alters
DNA, RNA and protein expression, hence the need for con-
trolled fixation of tissue [27]. In cutting sections for molecular
analysis, the risk of cross-contamination can be minimised by
replacing the knife regularly, avoiding water baths and using
disposable plastic ware. Decontamination procedures that com-
promise nucleic acid yield or amplifiability should be avoided
[28]. Cytological material that has been successfully tested for
routine genotyping is recommended for molecular analyses in
cases where tissue material is lacking and can often provide a
high yield of quality DNA [17-20, 29-32].

The importance of pre-PCR processing is illustrated by a
recent external quality assessment (EQA) ring study which
found that across 13 molecular pathology laboratories, the rate
of failure of mutation detection in BRAF and EGFR FFPE
samples was 11.9 %, of which 80 % were attributed to pre-
PCR errors [33].

Morphological assessment and choice of region of interest

The histopathological diagnosis is mostly from H&E-stained
sections of FFPE tissue. Morphological diagnosis and assess-
ment of the fraction of neoplastic cells in tissue and cytolog-
ical material are vital to the correct interpretation of NGS
results. Once the diagnosis and representative nature of the
material is established, it is recommended that the pathologist
mark an area for extraction which contains an enrichment of
neoplastic cells suitable to the level of detection i.e. appropri-
ate allelic frequencies of genetic changes needed for the
intended analysis. The selected fraction should be document-
ed. Microdissection is not always required e.g. when the spec-
imen contains a very high neoplastic cell content. To optimise
DNA quality, the pathologist should try to avoid necrotic
regions.

Nucleic acid extraction, quantification and storage

In clinical practice, quality-controlled reagents for nucleic acid
extraction are required. DNA extraction can be performed
manually, in some instances using precipitation, but usually
with the help of silica-based, commercial spin columns. All
extraction protocols require strict adherence to ensure required
yield and to avoid contamination or misidentification. There
are also several validated automated systems, many which use
magnetic bead-based extraction. These systems minimise
hands-on time and lower the risk of misidentification.
Commercial products that allow enzymatic removal of cyto-
sine deaminations during the extraction step have recently
been developed; these make DNA especially suitable for
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Table 2

Test performance characteristics (TPC) of NGS relevant to molecular pathology

Test performance
characteristic

TPC applied to NGS

Metrics and notes on assessment

Reportable range

Reference range

Limit of detection (LOD)

Repeatability

Reproducibility

Accuracy (if reporting VAF)

Precision (if reporting VAF)

Analytic sensitivity

Analytic specificity

Sequencing depth and allelic
frequency cut-offs

The region of the genome in which a sequence of acceptable Reporting range must be confirmed during test validation

quality can be derived (may not be a contiguous region)
The spectrum of normal variation of sequence within the
population that the assay is designed to detect.

The lowest allele frequency to which the assay can detect

with an acceptable quality to enable confidence in a result

i.e. the LOD is within the reporting range, (establishes
the detection limit for sequence variants)

Concordance of variant detection between runs from the
same sample under the same conditions e.g. prepare
different libraries from the same samples run at the same
time with the same operator and same instrument
(within-run or intra-batch variability)

Consistency of results from the same sample under
different variations in conditions e.g. between different
runs, different sample/library preparations, by different
operators, or using different instruments (between-run
or inter-batch variability).

The degree of agreement between the nucleic acid
sequences derived from the NGS assay and a reference
sequence (a measure of sequencing accuracy and
error rates)

The degree of agreement between replicate measurements
of the same material across users and runs
(a combination of reproducibility and repeatability)

The proportion of samples that test positive for a sequence
variation and are correctly classified as positive
(=TP / (TP + FN) (false-negative rate)

The proportion of samples that test negative for a sequence
variation and are correctly identified as negative
(=TN /(TN + FP) (false-positive rate)

Some laboratories establish specificity by calculating the
number of false positives per assay run.

The minimum sequencing coverage necessary for
confident detection and variant calling (established
for different variants)

Test results outside this range may be clinically significant
and require additional investigation.

Minimum and maximum amount of DNA for 95 % test
runs with adequate “no call” rate

Allelic read percentage

Sensitivity of the assay must be defined within the
reporting range of allele frequencies and amount on
input DNA for which the LOD was defined.

Analyse adequate number of runs depth of coverage
Uniformity of coverage

Transition/transversion ratio

Pair-wise agreement

Analyse adequate number of runs
Depth of coverage

Uniformity of coverage
Transition/transversion ratio
Pair-wise agreement

Adequate depth of coverage

Uniformity of coverage

Positive percent agreement

Negative percent agreement

Technical positive predictive value

Rate of “no call”

Allelic read fraction (number of independent reads
assessed when calling a variant)

Analyse adequate number of samples
Depth of coverage

Uniformity of coverage
Transition/transversion ratio

Depth of coverage

Number of independent reads used to make a base call.
This is dependent upon the amplifiability of the
template DNA in the assay.

Evaluation of base quality scores and signal-to-noise
ratios

Coverage (read depth and completeness)

Number of independent reads assessed when making a
base call

Evaluation of base quality scores and signal-to-noise
ratios. Potential for cross-reactivity and interfering
substances

Cross-contamination

Adapted from [21], [22] and [49]

NGS applications (Qiagen). In the case of decalcified speci-
mens, often a limited yield of good-quality DNA is obtained,
therefore validation of the quality and quantity of DNA is a
particularly important step for these samples. Furthermore, a
recent data suggests that using EDTA rather than hydrogen
chloride (HCL) to decalcify bone samples prior to embedding
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may improve the yield of usable nucleic acid for downstream
NGS profiling [34]. Whatever system is selected, it is impor-
tant to recognise that DNA and RNA yield and quality can
vary between sample types.

Nucleic acids can be quantified spectrophotometrically
(e.g. NanoDrop), fluorometrically (e.g. Qubit) or by
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quantitative PCR (qPCR). Combined quantification and frag-
ment analysis can be performed by capillary electrophoresis of
fluorescently labelled nucleic acids (e.g. BioAnalyzer).
Assessments using PCR have the advantage of better predic-
tion of the general amplifiability of the material, the key factor
for downstream NGS analysis. Fluorometric assessments cor-
relate fairly well with qPCR data and are generally recom-
mended for use prior to NGS analyses along with qPCR,
while spectrophotometric assays measure all nucleic acids
and therefore overestimate double-stranded DNA
concentration.

Nucleic acids are stored under highly controlled conditions
in order to maintain sample identity and integrity. Sample
accession logs or barcoded vials help avoid misidentification.
Extracted DNA should be stored long term at —20 °C and
RNA at —80 °C. Sequencing libraries and PCR products
may be stored at either —20 °C or at —80 °C, but should be
kept in separate freezers to avoid amplified material from con-
taminating non-amplified samples. The effects of length of
storage of nucleic acids for NGS analyses has been insuffi-
ciently studied, but DNA or cDNA is more stable than RNA,
and if stored appropriately, the integrity of the samples is more
likely to remain intact.

Sample misidentification

The verification of sample identity is essential in order to
ensure data integrity and validity of conclusions and to assign
results to the correct patient. The NGS workflow is a multistep
process with inherent risks of sample mix-up, therefore pro-
cedures must minimise the risk of the misidentification, from
the operating theatre to the reporting of the result. To this end,
barcoding may be used and, if so, should be introduced into
the pathway at the earliest opportunity. Panels can be designed
to incorporate SNPs that allow molecular identification of
patients and allow laboratories to monitor the incidence of
sample switching by detecting chromosome X- and Y-
specific sequences [35]. With different options available, ulti-
mately it is important to perform a full end-to-end analysis of
the risk of misidentification of the samples prior to introducing
NGS and also at regular intervals during operation.

Library preparation

Library preparation is the means by which genomic DNA is
prepared for sequencing. The exact library preparation method
will depend upon the sequencing platform and assay selected,
the details of which are available from the manufacturer.
Common to most platforms, the DNA must be fragmented
and platform specific adaptors are added to the ends of the
fragments. Targeted sequencing uses either an amplicon-
based approach in which the DNA fragments are generated

through short amplicons or through a hybridisation approach
where a sequencing library is prepared for the whole genome,
but only the regions of interest are kept for sequencing.
Library preparation usually adds a molecular barcode to each
DNA fragment, enabling identification of the sample follow-
ing sequencing. The molecular barcoding also allows multiple
samples to be pooled, reducing the costs involved and
avoiding misidentification of samples.

To avoid contamination when preparing sequencing librar-
ies, all steps prior to amplification should be carried out within
a designated pre-PCR area containing dedicated equipment
and reagents. Equipment should be fit for purpose and regu-
larly maintained and calibrated. Reagents should be stored
appropriately and used within the manufacturer’s expiry date.
Extra care is required during tube transfers, and procedural
training should underscore the avoidance of cross-
contamination or accidental sample mix-up.

Following library preparation, the sequencing libraries
should undergo quality control. This may include quantifica-
tion, fragment size analysis and qPCR, using adapter se-
quences for priming to ensure that the sequencing library
has been correctly formed and ensuring the appropriate posi-
tive and negative controls.

Quality assessment
General considerations

As NGS assays involve various combinations of instruments,
reagents and bioinformatic pipelines, standardisation is chal-
lenging. Therefore, NGS-based assays require thorough assess-
ment of potential pitfalls in different phases of the test cycle. As
with any laboratory test, they are prone to sample contamina-
tion, sample mix-ups and tumour-normal switches. Once the
validation work has been completed, continuous performance
monitoring ensures that the test remains fit for purpose and
detects quality issues before reporting a result. External
Quality Assessment (EQA) schemes should be used wherever
possible, and inter-laboratory comparisons may offer a suitable
alternative where EQA schemes are not yet available.

Next-generation sequencing quality scores

NGS quality scores will differ between sequencing platforms.
Most sequencing platforms use DNA sequencing quality
scores based on the Phred quality scoring system [36, 37].
Phred quality scores (Q scores) are logarithmically related to
the probability of base calling errors. Historically, Phred
scores have been used to determine the quality of Sanger
sequencing; after initial base calling, Phred calculates param-
eters related to peak shape and resolution in relation to the
base call, and a quality score is then assigned. Quality (Q)

@ Springer



Virchows Arch

scores can range from 4 to 60, with higher values correspond-
ing to higher quality (Table 3).

NGS quality metrics vary from Sanger sequencing
methods as there are no electropherogram peak heights to
refer to. Parameters relevant to the particular sequencing plat-
form are analysed for accuracy; using quality score tables, a
quality score is calculated for NGS data which possesses an
equivalent meaning to the Phred scores produced when using
Sanger sequencing platforms.

Phred quality scoring is widely accepted as a method
of assessing the quality of sequencing data including NGS
data. Additionally, the Phred scoring system can be used
to compare sequencing methods and platforms. Phred
quality score analysis is easily integrated into automated
data processing or the bioinformatics pipeline and will be
utilised by the software analytics to assess the quality of a
sequencing run alongside other relevant quality metrics
specific to the platform.

Quality assurance for NGS laboratory testing
and bioinformatics

Recent guidance on quality control and recommendations for
the use of NGS in different applications has been released
[8—14, 20-26]. This guidance has been summarised in
Table 4, acting as a checklist for the items and quality control
(QC) metrics that require reviewing in order to provide confi-
dence that the results are of sufficient quality to be released for
clinical use.

All assays should be validated for the sample type and the
conditions in which the assay is run. Working outside validat-
ed conditions, e.g. different samples, reagents and working
environment, increases the risk of false positives and nega-
tives. For clinical runs, wherever possible, manufactured neg-
ative and positive controls which contain a large amount of
variant types should be run; however, for practical purposes,
this is not always possible but it is recommended to run a
positive control sample. The performance of the control can
be monitored over the test, determining that the same variants
are detected each time.

Table 3  Phred quality score table

Phred quality Probability of incorrect Base call accuracy
score base call

10 1in 10 90 %

20 1 in 100 99 %

30 1 in 1000 99.9 %

40 1 in 10,000 99.99 %

50 1 in 100,000 99.999 %

60 1 in 1,000,000 99.9999 %
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When parameters are near acceptable limits, professional
judgement should be used to determine if the result should be
reported.

The bioinformatics methods should be validated to detect
the range of mutations for which the assay has been designed,
in a range of sequencing contexts and within the accepted
range of conditions for the assay.

Data analysis of sequence reads

The combination of bioinformatics tools used for processing,
aligning and detecting variants in NGS data is commonly
referred to as the data analysis or the bioinformatics pipeline.
Currently, no single algorithm can analyse all types of se-
quence variants; therefore, different software tools often are
applied to NGS data in order to answer the clinical question.
The difficulty in designing uniform and transferable pipelines
ultimately requires each laboratory to validate the bioinfor-
matics pipeline in accordance with the types of variants to
be reported. Commercially available software packages espe-
cially designed for the purpose of analysing amplicon-based
NGS data have a significant advantage over individual and
homemade bioinformatics solutions.

Read processing/read quality

The initial step in the analysis pipeline is usually performed by
the sequencer, converting the sequence into digital informa-
tion in order to be further processed. This information is later
used for the variant calling process.

Alignment

This step involves the alignment of sequencing reads to the
genome of reference. In the study of genetic alterations in
solid tumours, the human genome reference is the standard.
Alignment reference can utilise either the entire genome or the
genomic regions of interest (ROI). If the whole genome is
used, the computational time will be longer than the use of
specific ROI, while on the other hand, the use of ROI forces
the algorithms to align the reads to those regions which may
result in lower-quality calls.

NGS generally produces short reads of approximately 80—
200 bases. As the reads are equally short, alignment problems
are introduced, for there may be several equally likely places
in the reference sequence from which they could have been
read. This is especially true for large deletions or insertions,
repetitive regions and pseudo or homologous genes, the latter
being especially problematic if reads are mapped to an ROI
instead of the whole genome.

Mapping algorithms also need to account for different
types of technical error. As many NGS methods involve one
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or multiple PCR steps, PCR errors will be shown as mis-
matches in the alignment. This particularly applies to errors
in early PCR rounds which will show up in multiple reads,
falsely suggesting genomic variation in the sample. Related to
this are PCR duplicate errors which occur multiple times in the
same read, changing coverage calculations in the alignment.
Sequencing errors result from the sequencing machine making
an erroneous call, either for physical reasons, e.g. dust on the
flow cell, or due to the particular properties of the sequenced
DNA e.g. homopolymers. These sequencing errors are often
random so they can be filtered out as single reads during
variant calling.

Still, although alignment algorithms must be fine-tuned,
they need to allow a certain level of mismatch; otherwise, no
variation would ever be observed. This is especially true in the
context of somatic alterations where a variant might be present
in only a subgroup of neoplastic cells, introducing the possi-
bility that a variant may be present at differing allelic frequen-
cies from very low to very high, in stark contrast to germline
alterations that are present with 50 % heterozygous or 100 %
homozygous allelic fractions.

Variant calling

The quality of a variant call is strongly related with the quality
ofthe alignment e.g. the more relaxed the alignment algorithm
is, the more variants can be potentially called. The key chal-
lenge of variant caller algorithms is to help distinguish se-
quencing errors and call “real” variation. Therefore, there is
a direct effect of read depth; the more times a variant is se-
quenced, the more reliable the call. Here, the difficulties al-
ready described for the correct identification of variants with
low allelic fractions also play an important role. The minimum
depth of coverage depends on the required sensitivity of the
assay, sequencing method and the type of mutations to be
detected. The algorithm parameters should be varied during
assay development in order to derive optimal settings for each
variant the test is designed to detect. Laboratories should con-
sider the implementation of modular analysis pipelines in
which different algorithms or settings are used to analyse the
same data set and to call the different types of variants, i.e.
SNV, insertions, deletions and copy number alterations. In the
absence of a ‘gold standard’, bioinformatics pipelines should
be extensively validated [38—40].

INsertion/DELetion (indels)

Indels (INsertion/DELetion) are the second most common
type of genomic variation, and certain indels have proven to
have clinical relevance such as in EGFR, KITand ERBB2. The
reliable identification of indels by software packages post-
sequencing has proven challenging due to insufficient and
inaccurate mapping to the reference sequence. This is

compounded by the fact that indels occur at a lower frequency
than other variants which makes distinguishing alignment ar-
tefacts and sequencing errors (especially in homopolymer re-
gions) more problematic. As a result, the sensitivity and spec-
ificity for this type of variant is often reduced and high false-
positive rates are noted.

Laboratories must identify the clinically important indels
which are targeted within the scope of their particular assay
and validate these accordingly. The validation process should
enable the laboratory to establish both a sensitivity and posi-
tive predictive value for indels. These values will depend on
the type of sequencing technology and the bioinformatics/
alignment algorithm used. Due to the high rate of false posi-
tives, it is recommended that all identified indels are con-
firmed by manual visualisation tool such as the Integrative
Genomics Viewer (IGV).

Variant annotation and filtering

Annotation of sequence variants determines if a sequence var-
iant is either false or true and if the functional interpretation of
that variant is related to the gene (protein) function. False
variants are artefacts, variants that are absent from the
in vivo tissue and that are introduced during the pre-
analytical process or during storage of the specimen. There
are three major causes for false sequence variants: DNA de-
amination artefacts, amplification errors and sequencing er-
rors. A major cause for false variants in FFPE tissue is due
to deamination of cytosine bases resulting in C:G>T:A substi-
tutions during amplification. Hydrolytic deamination occurs
naturally, so older specimens will be more prone to these types
of errors, but formalin fixation contributes to this process [41].
Since these variants are usually present at very low frequency,
such artefacts are unlikely to interfere with data analysis if
enough unique DNA molecules are available during NGS
library enrichment. However, if the number of unique DNA
molecules is limited or if the aim is to detect low-level vari-
ants, these artefacts will interfere with data analysis. Since
deaminations are introduced during processing of the sample
ex vivo, these variants are not copied into the DNA, meaning
that the variant is present on only one sense or antisense DNA
strand.

To facilitate detection of fixation artefacts, several tech-
niques independently enrich and/or sequence both the sense
and antisense DNA strands e.g. molecular inversion probes
and HaloPlex and Duplex sequencing. Treatment with
uracil-DNA glycosylase prior to PCR amplification markedly
reduces these artefacts without effecting true mutational se-
quence changes [41, 42].

Another source of false variants is introduced during the
amplification steps of library enrichment. If sufficient unique
DNA molecules are present, the effect of polymerase errors
will be limited, posing a problem for the detection of low-level

@ Springer
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variants. One solution is the sequencing of single or unique
molecules. Library enrichment techniques are available that
allow barcoding of individual DNA molecules. Since poly-
merase errors occur during amplification, it is unlikely that
individual DNA molecules will independently acquire the
same polymerase error during amplification. The detection
of the same variant in multiple unique molecules therefore
allows for the discrimination between ultra-low level variants
and polymerase artefacts.

Also, false variants can be introduced during the sequenc-
ing process itself. The rate of such sequencing errors is highly
dependent on the sequencing platform and the chemistry used.
The representation and ability to call single base variants and
indels are similarly accurate for data generated on the PGM
and [llumina platform, provided there is sufficient coverage.
Sequencing of homopolymers using the PGM platform
showed a higher indel calling error rate. However, base/
variant calling in the Torrent Browser and using the newer
versions of Torrent Suite Variant Caller have shown signifi-
cant improved accuracy especially for indels in homopoly-
mers up to eight bases [43, 44]. It is recommended to use
proper computational indel calling analysis of variants in clin-
ical relevant homopolymers to maximise both the sensitivity
and specificity at the single base level. In addition, all identi-
fied indels at homopolymers should be confirmed by a manual
visualisation tool such as IGV and directly compared to se-
quence data of the same regions in other samples analysed in
the same run.

Variant interpretation

The next step is the functional annotation and subsequent
biological interpretation of the true variants. Depending on
the type of variation (e.g. non-sense versus missense) or on
the type of gene (e.g. hotspot position in an oncogene versus
tumour suppressor gene), this can be either a simple or very
laborious process. Since interpretation of genetic data be-
comes more complex, the ACMG strongly recommends that
interpretation is performed in the laboratory by suitably
trained staff such as clinical molecular geneticists, clinical
scientists in molecular pathology or molecular pathologists
[45]. Furthermore, a multiple disciplinary team approach from
technical, scientific and clinical members will enable appro-
priate clinical interpretation of the results in the context of
current drug and clinical trials.

Multiple sources of information are required to describe
variants of uncertain significance (VUS). When sequencing
DNA from tumour tissue, an effective way to discriminate
somatic variants from germline variants is to sequence, in
parallel, reference DNA from non-neoplastic tissue from the
same person. Otherwise, the first step is to retrieve the popu-
lation frequency of the VUS from the dbSNP database to
discriminate common variant polymorphisms from other

@ Springer

unknown variants (UV). Although there is no clear cut-off,
UVs with a population frequency >1% are usually considered
to be polymorphisms. Other databases e.g. Catalogue of
Somatic Mutations in Cancer (COSMIC) or ClinVar (which
aggregates information about genomic variation and its rela-
tionship to human health) can provide information regarding
frequency and biological function of variants in disease.
Further classification of VUS can be accomplished using al-
gorithms that consider nucleotide conservation throughout
evolution e.g. phastCons and phyloP and physicochemical
difference between wild-type and mutated amino acids i.e.
Grantham distance, or predict the possible impact of muta-
tions on protein structure and function e.g. PolyPhen, SIFT,
and Align GVGD. Examples of software solutions, databases
and tools that facilitate variant classification and interpretation
are presented in Supplementary Table 2 (ST2).

Based on the available data, e.g. variant frequency,
predictions, knowledge bases and functional studies, a
variant can be described using standard terminology e.g.
benign, likely benign, of uncertain significance, likely
pathogenic or pathogenic [46] or activating, neutral/VUS
and inactivating [47].

Overall, the advantage and limitations of existing tools
must be objectively evaluated by clinical or pathological
laboratories according to their specific sequencing needs.
For NGS data analysis, the acceptable thresholds for data
quality and depth of coverage should be determined dur-
ing the assay development and validation process. Quality
thresholds should include metrics such as base calling
quality, coverage, allelic read percentages, strand bias
and alignment quality. Importantly, the thresholds validat-
ed for the detection of germline alterations cannot be
transposed for the identification of somatic alterations in
tumour samples [48].

Reporting of results
Content of test report

The reporting of NGS results should follow the general prin-
ciples of clinical reporting and sit in line with international
diagnostic standards such as ISO 15189 (2) and professional
guidelines [8—14, 20-26] (see Table 5). It is essential that
clinically actionable results are reported in a clear and consis-
tent manner and the use of supplemental documentation [17]
ensures the reader of the report is in receipt of all the informa-
tion required to appropriately interpret the results. Clear
reporting is also critical since laboratory reports may be read
by both experts and non-experts. However, there are specific
issues related to the reporting of somatic genomic variants,
and these will be considered below.
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Table 5 Information to be included on the NGS patient report

* Patient identifiers

* Sample type e.g. FFPE, fresh frozen

» Tissue/tumour type e.g. lung, colorectal, melanoma

* Tissue sample identification e.g. unique block number

* Restatement of the clinical question

* Percentage of neoplastic content of sample used for NGS

* Extent of testing performed i.e. the genes and more specifically which
regions tested e.g. exons, introns or hot spots analysed

* NGS method used e.g. platform, type of panel (amplicon,
hybridisation), exome, WGS

* Sensitivity of the method i.e. percentage variant alleles detectable in a
background of wild-type DNA

* Reference sequences for genes tested”
* Results (using HGVS mutation nomenclature)®
« How/where additional information about the analysis can be obtained®

* Interpretation and conclusion (see “Interpretation” and “Other reporting
considerations” sections)

1t is essential to use Human Genome Variation Society (HGVS;
http://www.hgvs.org/mutnomen/) mutation nomenclature and to include
the appropriate reference sequence including version number used for
gene or transcript number if locus-specific genome sequences (LRGs)
are used. For reference purposed, the HUGO Gene Nomenclature
Committee (HGNC) approved that gene symbols should be used at least
once. In addition, it is strongly recommended to include genomic coor-
dinates in order to ensure uniform bioinformatics analysis and consistent
documentation of identified variants. If genomic coordinates are used,
then the appropriate genome build must be stated. Exon annotation of
the identified variants is not required, since version updates of the refer-
ence sequences occur frequently. However, the use of LRGs can help to
avoid the changes in exon numbering

®In most cases, requesting clinicians will find the information on the
standard patient report sufficient for their needs, but in some instances,
supplementary details may be necessary. These could include technical
characteristics of the test methodology, bioinformatics pipelines, valida-
tion reports and methods for annotation and classification of variants.
How these supplementary details can be obtained should be stated on
the patient report. Supplementary details may be in the form of a report,
for example, “supplementary technical report available on request” can
be stated on the patient report. Alternatively, the clinician could be direct-
ed to a controlled document such as a “laboratory handbook” or to a link
for online information. In any case, care must be taken with document
version control and online links should divert the user to data pertinent to
the way the specific sample was tested and analysed, even if the method-
ology has been superseded for current samples

The NGS patient report should ideally be one page in
length (if not possible, then no more than two pages) and
contain the information outlined in Table 5. It is important that
the most pertinent information, i.e. results and conclusions,
are positioned prominently on the report and clearly visible
to requesting clinicians. Sufficient technical information
should be provided (Table 5), but the inclusion of in-depth
technical information is not recommended. However, in some
cases, service users may require more detailed methodological
information; therefore, the report should contain clear infor-
mation on how to access these details.

Interpretation

The purpose of clinical diagnostic testing of solid tumours is
to identify the presence or absence of variants, in order to aid
diagnosis, predict prognosis or guide optimal therapy.
Therefore, variants should be classified and reported accord-
ing to their potential for clinical action and the robustness of
the result. The robustness of a given variant for clinical utility
falls into three domains:

Domain 1: Clinical—variants that have a current approved/
licenced therapeutic indication or are used clini-
cally for diagnosis, prognosis or therapeutic
monitoring

Clinical trials—variants that are hypothesised to
predict response to a novel compound and entry
to a clinical trial may be possible.
Research—mutations not currently used to in-
form clinical management but have a biological
effect implicated in tumour oncogenesis which
may have future clinical utility.

Domain 2:

Domain 3:

There should be an agreement between the laboratory and
its service users over which classification/domains of muta-
tions should be included on patients’ reports. For example,
domain 1 mutations should always be included; however, it
would not be appropriate to list domain 3 mutations which
have no current clinical utility on a routine diagnostic report.
Alternatively, it may be useful to include domain 3 variants on
a report being forwarded to a clinical research centre.

The mainstay of assessing the ability to action a variant
should be via the usual literature searches. Due to the fast pace
of cancer research and therapy development, constant vigi-
lance and regular update of searches is required to ensure the
advice given on reports is up to date. There is an increasing
number of online resources such as mycancergenome.org
which contain lists of tumour types, genes and variants and
include assessments of clinical impact. These resources can be
very useful, but before such a source is used, it is important to
ensure that it is properly curated, referenced and regularly
updated. In this regard, recent guidance from the FDA has
suggested considerations for determining whether a genetic
variant database is a valid source of scientific evidence for
supporting the clinical validity of genotype-phenotype rela-
tionships that may assist laboratories in selecting appropriate
data sources [49]. The guidance suggests users seek databases
that implement decision matrices with published details
supporting each variant’s interpretation as well as having doc-
umented standard operating procedures for outlining the pro-
cess for curation of evidence and that demonstrate that multi-
ple sources for evidence are used.

When assigning variants to domains, it is essential that they
are interpreted in the context of the tumour/tissue type, as the
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resulting clinical action will vary e.g. mutations classified as
domain 1 in a particular tumour type could fall into domain 2
or 3 in another tumour type. In other words, the classification
of variants will be specific to the tissue and tumour type.
When reporting domain 1 variants, a clear indication of their
clinical relevance and any appropriate actions should be in-
cluded. For domain 2 variants, it may be useful to alert the
requesting clinician to the possibility that clinical trials may be
available. Furthermore, as new evidence and therapeutics
emerge, the classification of particular variants will change.

Other reporting considerations

It is essential that NGS results are interpreted in conjunction
with other pathology results from the sample, such as morpho-
logical assessment and immunohistochemistry. It is therefore
recommended that the pathology report includes a subsequent
integrated/supplementary summary which includes a/l the rel-
evant test results and an overriding conclusion.

In cases where the neoplastic cell content of the sample is
close to or below the analytical sensitivity of the method used,
a remark alerting the clinician to the possibility of a false-
negative result should be included.

Variant allele frequency should only be included on the
patient report if the clinical significance of differing levels of
allele frequency is known.

Laboratories should have a clearly defined protocol for
addressing any unsolicited and secondary findings that may
arise during testing prior to launching the NGS test.

In cases when the full laboratory quality standards have not
been met but it is felt a limited interpretation can be made, then
the limitations of the analysis should be made clear on the
report.

Compliance with ethical standards This guideline does not contain
any studies with human participants or animals performed by any of the
authors. For this type of work, human subjects were not used and formal
consent is not required.
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